A discrete duality finite volume discretization of the vorticity-velocity-pressure formulation of the 2D Stokes problem on almost arbitrary two-dimensional grids

نویسندگان

  • Sarah Delcourte
  • Pascal Omnes
چکیده

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. A discrete duality finite volume discretization of the vorticity-velocity-pressure formulation of the 2D Stokes problem on almost arbitrary two-dimensional grids Sarah Delcourte, Pascal Omnes

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations

In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capabl...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations

We derive an a posteriori error estimation for the discrete duality finite volume (DDFV) discretization of the stationary Stokes equations on very general twodimensional meshes, when a penalty term is added in the incompressibility equation to stabilize the variational formulation. Two different estimators are provided: one for the error on the velocity and one for the error on the pressure. Th...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

A New Formulation of the Stokes Problem in a Cylinder, and Its Spectral Discretization

We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly div...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013